
Technical Notes

Note that the inequality (12) could be 'optimized' by
choosing such a value for e > 0 that will make the estimate that
follows from equation (12) minimal.

For completeness we cite the L2 error bound derived in [3],

(5.
1 )1/2 ( 1 )1/2

lI<5yIIL, = <5y2 dx = A . }"+2}2+C . • (18)
o mm "I "I nun

To illustrate the procedure, we performed calculations with
the trial functions of the form
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Table I

N P I lI<5yIlL~ ~

0.5 0.157 0.0169 0.113
I 0.236 0.03457 0.172
2 0.329 0.329 0.25

• 1t
y= I-p SIn-X

2

0.0533
0.0766
0.108

(19)

where Pis a constant to be determined. Substituting equation
(19)into(3)and minimizing with respect to pthevaluesgiven in
Table I are obtained. With these values for p, estimates for
errors are calculated from equation (12) (with £ = 0.1) and
equation (18).

Finally, we note that the accuracy of the approximate
solution and the bounds on errors could be improved by
taking more elaborate trial functions.
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i\'O:\lEi\'CLATURE

A, see equation (12)
Bi Biot number, hrJk
Ci see equation (6)
Fo Fourier number, dimensionless time, a.t/r;
i», Fo, when <5 approaches 1
f see equation (9)
h heat-transfer coefficient [W m- 2 K- I ]

k thermal conductivity of the pellet [W m- I K -I]
r dimensionless radial distance, referred to r.
r. radius of spherical particle Em]
t time [s]
T dimensionless temperature, referred to To
To dimensionless gas temperature, referred to To
1; dimensionless pellet surface temperature, referred

to To
1;.~ 1;, when s approaches 1
To initial temperature [K]

Greek symbols
a. thermal difTusivity of the pellet [m? S-I]

<5 dimensionless penetration depth of the thermal
wave, measured from the particle surface, referred
to r.

9 dimensionless surface temperature, (T,- T,)/(I- To)
o dimensionless quantity, 1-(1-Bi)9

I. Il'."fRODUCfION

THE PURPOSE of the present note is to compare approximate
solutions of the heat conduction equation for aspherefound in
the literature [1-3] and to give an improved approximation

for long heating times. In particular, attention is focused on
the surface temperature which plays an important role in
many engineering problems, e.g. the convective heat transfer
to particles or droplets in two-phase flow. As is well known, for
many types of boundary conditions, there exist analytical
solutions of the heat conduction equation expressed in terms
of infinite series [4]. In more complicated cases numerical
exact solutions can be obtained from a number ofcapable and
flexible soft wares [5]. However, within the scope ofa complex
two-phase flow problem which can only be treated
numerically [1-3], one cannot employ the solution for single
particles. This fact is essentially due to insufficient computer
field length and too long computation time. Therefore, the
use of approximate solutions is necessary. Moreover, the
application of approximate methods is justified in practical
engineering, where the general validity of a solution is not as
important as a fast and simple treatment of the problem to be
solved. For that reason, in the present paper a comparison
between the approximation formulas mentioned above [1-3],
a solution obtained under the assumption ofa spatial uniform
pellet temperature, and a numerical exact solution is
presented. The validity range of the best approximation
formula is extended to larger time intervals. The ODE's
obtained from this approximation method are solved
analytically for the case of constant heat transfer coefficient
and constant gas temperature.

2. GOYERi\'Ii\'G EQUATIOi\' AND METHOD
OF APPROXI;\IATE SOLUTIOi\'

The basic equation is the heat conduction equation for a
.sphere,

(I)
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(8)

(9)

(12)

(II)

(10)

(7b)

Co= -(I-0]3j.5- ' (3- W ' ,

CI = -3Co/(I-a)+ I,

C2 = 3Co/(I-a)2,

C3 = -Co/(l - 0)3.

T,(Fod) = T..d (l3b)

and

Ao = T.-O.5f,
(14)

Al =0.5j

wherejis defined in equation (9). It can be easily checked that
for Fo = Fodequation(6)andequation(12)representidentieal

profiles, although they are only linked by the initial condition
equation (l3b).

yields

ar; { dT. dBi}
dFo = 12Bi(Fo)[T.(Fo)-T,(Fo)]+Bi dF: +(T.-T.)dFo

x [4+Bi(Fo))-J for Fo ~ ro; (l3a)

subject to

For Fo ~ FOJ the application of the integral method to the
quadratic profile

subject to
T,(O)= 1.

Here 0 is

Mathematically,equation (10) means that equation (7a) can
only be applied in cases where Bi exceeds a certain critical Biot
number Bi"since';(Fo) is only allowed tovarywithin [O,I].As
a physical consequence of equation (10) there is no sense in
applying approximation formulas like equation (7) to cases
where the conduction resistance of the body issmall compared
with the convection resistance and therefore, as is well known,
for Bi -> 0 the assumption of a spatial uniform pellet
temperature is justified. Apart from this, equation (7) has a
singularity for a-> O. For practical purposes this singularity
can be suppressed by setting 0(0) = t: where (; is any small
number, e.g. (;= 0.001.

The Fa-dependent coefficients in equation (6)ean be written
as

8 i-O

o(Fo) =3[T.(Fo)-I]/[T.(Fo)-l+j(Fo))

withfdefined as

fIFo) = Bi(Fo) [T.(Fo)- T.(Fo»).

Equation (8) reveals that

Iimo=3>1.

dT, = [12 {T.(Fo)-1 +Bi(Fo)[T.(Fo)- T,(Fo)]}
dFo .5

+.5{Bi(FO) dT. + [T.(Fo)- T,(Fo») dBi}]
dFo dFo

x [6+(Bi-I)<5r J for 0 ~ Fo ~ FOd (7a)

presented by Kuo and Summerfield [2] achieves the best
agreement with the numerical exact solution, the coefficients
of that profile are given and the validity range of the formula is
extended to times Fo ~ Fod•

Assuming a profile of the form

T = [Co(Fo)+C,(Fo)r+ C2(Fo)r
2 +C3(Fo)r

3]/r (6)

(2c) in ref. [2], the following ODE for T,is derived:

(5b)

(3a)

(2a)

(4b)

(3b)

(2b)

O~r~ I,

Fo~O,

T,(O) = I

T(Fo, 1-.5) = I, 0 ~ Fo ~ Fod,

aT
~(Fo,I-.5)=O, O~Fo~Fod'
cr

T(O,r) = I,

aT
~(Fo, I) = Bi(T.- T,), Fo > O.
a

aT
~(Fo,O) = 0,
cr

subject to the initial and boundary conditions

subject to

After carrying out the standard procedures of the integral
method [6] an ODE

dT. .
dFo = f,(T" Fo), 0 ~ Fo ~ Fod, (4a)

Since four coefficients are to be determined an additional
condition is derived

a2 T
--:::-T(Fo, 1-.5) = 0, 0 ~ Fo ~ Fod. (3c)
cr

subject to

3. DESCRIPTIOI' OF TilE APPROXI:\IATlOI'
FOR:\IULAS

In an earlier paper [I], Kuo et al. did not apply the concept
of penetration distance, but obtained a heat balance integral
by integrating equation (I) from r = 0 to r = I. In later papers
(e.g. [2]), Kuo and Summerfield applied the procedure
outlined above to a profile suggested by Lardner and Pohle
[7). Gough and Zwarts [3] considered the sphere as a plane
semi-infinite body, using a result given by Goodman [6]. In the
most simple case the heat flow to the particle is controlled by
the convection resistance and therefore the particles can be
assumed to behavespacewise isothermal.Thus,a heat balance
on the particle, equating the change in heat capacity with the
convective heat loss, easily yields an ODE for the particle
temperature.

Since the comparative tests revealed that the formula

is obtained.
As soon as.5 = I (Fo = Fod) the initial stage is terminated

and equation (4) is no longer valid. In the second stage, the
concept of penetration distance has no meaning and,
consequently, only the natural boundary conditions (2b) and
(2c)are applied. Now a quadratic profile which automatically
satisfies the symmetry requirement imposed by boundary
condition (2b) at r = 0 is assumed. Then, the integral method
leads to an ODE

dT,
dFo = f2(T" Fo), FOd~ Fo ~ OJ, (Sa)

Boundary condition (2c) is not transformed into a homo
geneous form because T. and Bi may depend upon Fo.

The ODE's describing the approximate solutions are
obtained employing integral methods. Since the original
concept of these methods is well documented in the literature
[6), the method of solution is only briefly outlined here. It is
assumed that T(Fo,r) can be represented in the interval
[.5(Fo), I] by a polynomial in r with four (a priori unknown)
coefficients only depending upon Fo. Initially, the effect of the
boundary conditions at r = 0 is not felt and therefore,
conditions(2a) and (2b) are replaced by the natural conditions,
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Ts num. exact
T -- num. exact
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FIG.3. Development of temperature profiles with timeinside a
particle.

FIG. 1. The different approximations and the numerical exact
solution for short time intervals.

0.0 0.5

4. CLOSED FORM SOLUTIONS

For constant values of T,and Bi the following solutions of
equations (7) and (13) are obtained

5. RESULTS AND DISCUSSION

The results represented in Figs. 1-3 refer to constant values
(IS) of T, and Bi. In Fig. 4 both T, and Bi are assumed to be

exponential functions of time. In all cases considered the value
of To is To = 300 K.

In Fig. I, the solutions of the different approximation
formulas are plotted for an Al203-particle with r. = I mm.
The corresponding time interval is t = 120 ms. Although
exceeding its theoretical validity range [0, F06] , the solution
obtained by Kuo and Summerfield [2] achieves best
agreement with the numerical exact solution. For short time

(16) intervals the formula of Gough and Zwarts [3] yields
acceptable results too. However, the deviations from the exact
solution increase with increasing time. This is to be expected
since in the case of a planar semi-infinite body the volume into

for

and

for

0.75 { (0) I [ (Bi)2J}FO=(I_Bi)2 In Bi -2 1- 0

2
1 ;;. 8 ;;.--, 0 ~ Fo ~ Fo.,

2+Bi v

4+Bi [ 2 JFo=F06+--1n ---
12Bi (2+BI}8

where

FO=~[ln(-._3_) Bi(Bi+4)-5J.
d (I-BI}2 2+Bi + 18

(17)

8;

FIG.2. Solution of equations (IS) and (16)and numerical exact
solution for different values of T,.
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FIG."4. Solution of equations (7)and (13) and numerical exact
solution for exponentially varying gas temperature and Biot

number.
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which the heat diffuses remains the same for equal spatial
increments. The solution of Kuo et al. [I) yields too low
temperatures during the initial stage, whereas it overshoots
the exact solution when it is extended to larger time intervals.
Doth effects are probably due to a not appropriately chosen
approximation formula. The considerable difference between
the numerical solution and the solution obtained under the
assumption of a spatial uniform temperature is to be expected
for the used value of Bi.

In Fig. 2 results are represented for an AI20 Joparticle with
r. = 5 rom, obtained from the approximate solutions equations
(15) and (16), and the numerical solution. The corresponding
time interval is t = 20 s, which exceeds the validity range of
equation (15) by a factor of 25. The parameter varied is r..
Again, the solution of Kuo and Summerfield [2) achieves
excellent agreement with the exact solution as long as it does
not exceed its validity range too far . However, the deviation
from the numerical solution increases with increasing r. and
increasing Fo, whereas the solutions obtained from equation
(16) yield good agreement with the numerical solution for
rs» Fo~.

Figure 3 shows the temperature profiles inside a solid
propellant-particle with r. = 5 mm. The corresponding time
interval is 1.7 s. The good agreement with the numerical
solution during the initial stage slowly decreases with
increasing penetration of the thermal wave. Although
equation (6) and equation (12) provide identical results for
Fo = FoJ, there occurs a rapid displacement of the tempera
ture profile in the environment of the center shortly after the
beginning of the second stage. This deviation decreases ....rith
increasing time while in the outer layers beneath the particle
surface there is always good agreement with the numerical
solution.

Figure 4 again shows results for an Al20 3-particle with
r, = 5 mm. The corresponding time interval is t = 10 s. In
this case, r. and Bi are exponential functions of Fo. For
o~ Fo ~ FOJ the approximate solutions are obtained from
equation(J) while for Fo "" Fo; equation (13) is solved. These
approximate solutions, the numerical solution, r., and Bi are
presented. It can be gathered that there is again good
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agreement between the numerical solution and the
approximate solution assembled from equations (7) and (13).

6. COI'CLUDlI'G REMARKS

The approximation formula given by Kuo and Summerfield
[2) turned out to yield the best agreement to the numerical
solution, however, its validity range is limited . For that reason
an extended solution, linked to that formula, was derived. For
the case that both r. and Bi are constants, the corresponding
ODE's could be solved analytically. The surface temperature
obtained by these two approximation formulas agrees very
well with the numerical solution, whereas in the center of a
pellet deviations can occur.
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l'\O;\IEl'\CLATURE

Cp specific heat of the gas at constant pressure
[J kg- ' K- ')

cpx specific heat of the gas at constant pressure
evaluated at 1;.[J kg- ' K- ']

cpw specific heat of the gas at constant pressure
evaluated at the wall temperature Tw [J kg - I K - I]

qw heat flux to or from the gas at the wan [W m - 2]
T gas temperature [K]
To gas bulk temperature [K]
T; wan temperature [K]
1;. geometrical mean between wan and gas bulk

temperature [K]

dimensionless gas temperature with gas properties
evaluated at Tw

dimensionless gas temperature with the gas
properties evaluated at 1;.

u: friction velocity with the gas density evaluated at Tw

[ms- I ]

u: friction velocity with the gas density evaluated at 1;.
[m S-I]

It~ dimensionless gas velocity with the gas density
evaluated at Tw

»; dimensionless gas velocity with the gas density
evaluated at 1;.
radial distance from the wan of the considered point
em]




